Julius-Maximilians- Fakultit fiir Mathematik und Informatik
UNIVE RS'TAT Institut fiir Informatik
WU RZBURG Lehrstuhl fiir Informatik IX

Games Engineering

Bachelorarbeit

zur Erlangung des Grades
Bachelor of Science (B.Sc.)
im Studiengang Games Engineering
an der Julius-Maximilians-Universitat Wirzburg

Self-Organised Construction of
Particle-Based 3D Artifacts

vorgelegt von
Lenny Siol
Matrikelnummer: 2334375

am 27.03.2023

Priifer: Prof. Dr. Sebastian von Mammen
Betreuer: Prof. Dr. Sebastian von Mammen
Lehrstuhl fiir Informatik IX
Julius-Maximilians-Universitat Wiirzburg

Zusammenfassung

In dem virtual reality Spicl "Swarm Tower Defense” muss der Spicler mithilfe von
Schwarmagenten seine Basis verteidigen. Er tut dies, indem er die Agenten Ressourcen
sammecln ldasst, mit denen sie dann Verteidigungstiirme bauen. Das Ziel des Spicls
ist es, dic Gegner davon abzuhalten, die cigene Basis zu erreichen. Die Verteidi-
gungstiirme miissen strategisch platziert werden, um die Gegner, dic jedes Level
mchr und starker werden, abzuwehren. Um den Bau cines Turms zu initialisieren,
platziert der Spicler zunéchst cine Markicrung auf der Karte. Wenn ausrcichend
Ressourcen zur Markicrung geliefert wurden, ist der Bau des Turms abgeschlossen.
Das Zicl dieser Arbeit ist es, das bereits existicrende, bindre Turmsystem durch or-
ganisch wachsende Tiirme zu ersetzen. Um das organische Wachstum der Tiirme zu
simulicren, werden diese wiahrend des Spicls prozedural generiert. Wo und wie die
Tuarme wachsen, wird dadurch beeinflusst, an welcher Stelle die Schwarmagenten
ihre Ressourcen abwerfen. Das Ergebnis ist cin Tower Defense Spicl, in dem der
Spicler Schwarmagenten beeinflussen kann, organische Turmstrukturen zu bauen.
Diese Art des Turmbauens bictet cine neue Spiclmechanik fiir das Tower Defense

Genre, ohne zu weit von ctablierten Mechaniken abzuweichen.

Abstract

In the game "Swarm Tower Defense', the player has to defend his/her base by
controlling a swarm of agents in virtual reality. The player commands the agents to
gather resources and build defending towers. The goal is to prevent waves of enemics
from rcaching the player’s base. The player has to strategically place defensive
structures in order to withstand increasingly more and stronger enemics with cach
level. To build a tower, the player places building markers on the map. When enough
resources are delivered to a marker, the tower construction is finished, and the tower
is fully built. The goal of this work is to replace these already existing binary
towers with organically growing towers. This is done by procedurally generating the
towers during runtime, using the coordinates where the swarm agents deposit their

resources.

The result is a tower defense game in which the player can influence the agents to
build organic tower structures. The way the towers are built presents novel game-
play challenges for the player while also not deviating too much from established

mechanics used in tower defense games.

iv

Contents

1 Introduction
1.1 Background e
1.2 Goals.
1.3 Methodology
1.4 Detailed Gameplay Loop oL,
1.5 Tower Grading
2 Related Work
2.1 What is Procedural Content Generation?
2.2 What isa Swarm?
2.3 Using Swarm Agents for PCG
2.4 How is PCG Applied in Tower Defense Games?
2.5 Using Marching Cubes for PCG
3 Methodology
3.1 Tower Construction
3.1.1 Resource Dropping and Gravity
3.1.2 Tower Placement
3.1.3 Octree . . .o o
3.1.4 Shaders
3.2 Tower Functionalities
3.3 Combining Types e
4 Results
4.1 Tower Evaluation
4.2 Gameplay Impacto
4.3 Example Towers Lo
4.3.1 Towers Grown With Gameplay Restrictions
4.3.2 Towers Grown With No Gameplay Restrictions
5 Discussion
5.1 Balancing
5.2 Future Work
Bibliography

11
11
14
15
16
16
17
18

1 Introduction

Simulating a swarm is a complex topic that can yicld interesting and unpredictable
results. Defining the behavior of a single swarm agent and observing how complex
behaviors emerge when a group of them interact with cach other has a unique appeal.
There are many different applications, like simulating the behavior of an ant colony
in order to try to solve complex problems like the "traveling salesman problem”
(Chen & Chien, 2011) or more abstracted behaviors like controlling the movement

and coordination of enemies in video games like "Project Zomboid" (2011).

1.1 Background

One of these applications is the virtual reality (VR) game "Swarm Tower Defense,”
developed as part of a rescarch lab at the University of Wiirzburg. As the name
may suggest, the game combines swarm mechanics with the tower defense genre.
In the game, the player takes control of a swarm of agents modeled to look like
mechanical dragonflies. The player’s task is to defend his/her base from oncoming
waves of enemies. This is done by influencing the swarm to gather resources from
defeated enemies. The resources arc then used to build defensive structures which

destroy the enemies or slow them down in their advance.

The player advances through different stages, facing increasingly more and stronger
cnemics. This forces the player to build more and more defensive structures as
the game progresses. Should the player survive cach and cvery stage through the

strategic placement of the defensive structures, he/she wins the game.

1.2 Goals

In this thesis, the building of the defenses is expanded upon. In the existing system,

the player can place a construction marker on the map using their hands in VR. The

1 Introduction

player can choose from three different types of construction of markers, resulting in
onc of three towers. While under construction, the swarm agents can be guided to
deposit resources to the marker. Once a certain resource threshold is passed, the
tower’s construction is finished. The construction marker disappears, and the tower

becomes active.

When active, the towers function depending on their type. The game has single-
attack towers that damage the nearest enemy at regular intervals. The shock tower
has less reach and damage but damages all nearby enemies, and the shicld tower
generates a roadblock that slows down the enemics’ advance. While keeping the
spirit of this three-typed system, the interaction of swarm agent behavior and how

the towers are built is changed.

Since the agents arc already represented as small robotic insects, the idea is to
organically grow the towers like an inscct hive would. To achicve this, the tower
meshes are procedurally generated during runtime using the agents’ positions when
they drop off a carried resource. This system replaces the old towers and, therefore,
the simple two-step building process. The new system allows the swarm to create
novel, organic tower shapes while retaining most of the control the player has over
the tower placement. The goal is to create towers unique to the tower defense genre
and intcgrate them into the existing game in a visually appealing way while also

impacting the gameplay mecaningfully.

1.3 Methodology

To achieve this, information about different procedural content generation (PCG)
methods and how PCG is used in combination with swarms and tower defense games
is collected. The desired algorithm is then narrowed down to Marching Cubes. First,
a single Marching Cube is implemented. The cube is then tested in a testing scene
scparate from the main game. Then edge weights are added, and a simple grid of
cubes is created. The grid is then tested by assigning random values to cach point.
Afterward, a simple mock agent is implemented. The agent moves around and
deposits resources randomly. After ensuring the cubes behave correctly, simulated
gravity is introduced to let the resources fall to the ground. Next, the system is
switched from a single resource type to multiple resource types. Then the system is

tested again with multiple simple agents that drop different types of resources.

1.4 Detailed Gameplay Loop

With this in place, a surface shader is created, and the placement of the predefined
clements is implemented too. Then the functionalities for the different tower types
arc added. Lastly, the new system is ported to the existing game scene. After
cnsuring the system works with the actual agents, the game is then tested to adjust
damage numbers and movement speed modifiers. To ensure that the new system
works, the game is played multiple times, trying different settings. The performance

is measured, and the towers are graded according to predefined criteria.

1.4 Detailed Gameplay Loop

To give context, this section briefly describes how the game is played, what options

the player has, and how the player wins the game.

The game begins with a tutorial. The map is empty except for the agents idling and
a dead enemy on the ground. A tutorial text instructs the player to commandeer
the agents to gather resources from the dead enemy. When the player does this,
he/she is prompted to construct his/her first tower (1.1).

Tutorial

To defend your base from the

will have to

Figure 1.1. The beginning of the game. The player is instructed to build his/her
first tower.

The player does this by first placing a marker. The player places a marker by

grabbing it from a sclection table next to the game map and then dropping it at

1 Introduction

the desired position. This is done using VR controllers (1.2). In the beginning,
the player only has one type of marker, which builds laser towers. The player first

unlocks the shicld and then the shock tower as the game progressces.

- pUIlC WEERBRE
tower in front of you to create a

ol bt swot si) ded
1eod arit no §

Figure 1.2. The player is placing a marker with the controller. The marker is
snapped to the ground plane when the trigger is released.

Now that the marker is placed and the agents have gathered resources, the player
can create a path using a spray can. The player can shape the path by moving the
spray can with the VR controller while holding down the trigger. When agents come

necar the path, they follow it according to their swarm logic (1.3).

Figure 1.3. The agents are carrying resources. When they encounter a path set by
the player, they follow it.

If following this path results in agents colliding with a marker, they drop their

resource if they are carrying one. The resource falls to the ground. On impact,

1.4 Detailed Gameplay Loop

the Marching Cube mesh is modified, creating the tower mesh by deforming the
ground planc. The ground is increasingly deformed with cach dropped resource,

slowly building up the tower structure (1.4).

Figure 1.4. When agents carrying a resource collide with a marker, they deposit
their resource. This, in turn, grows the tower. After a set amount of resources is
deposited, the marker disappears.

When enough resources have been dropped, the marker disappears. The player has

grown their first small tower, and the tutorial is finished (1.4).

Now the game begins. The first enemies spawn and follow a path to the player’s
base. Should they reach the player’s base, the player loses a health point. The
player loses the game and has to start over should his/her health points be reduced
to zero. While the enemies move to the player’s base, they are attacked by the laser
tower, reducing their health. The laser tower attacks the nearest enemy cvery 6
scconds. When an enemy’s health is reduced to zero, they die and cease moving.
Now the agents can collect new resources from their bodies. The player can repeat
the process from the tutorial to build new independent towers or place markers near
existing towers to grow them. Once all enemies are defeated, the player progresses
to the next stage. With cach stage, the number of enemies grows. Also, cnemics
with more health are spawned. After a couple of stages, the player unlocks the
shield towers. All towers are built with the same mechanics. The only difference is

the type of marker the player selects. The shield tower can be grown in the path of

1 Introduction

the enemices, slowing them down. After more stages, the player unlocks the shock
tower. The shock tower throws an orb at the ncarest enemy, damaging all enemices in
the arca around the hit target. Increasing the size of a tower increases its strength.
Lascr towers, for example, deal more damage with a single attack the bigger they
arc. The player can also combine different tower types. Each tower can have a main
type and a sub-type. Depending on the sub-type, the base tower behavior changes.
When the player manages to finish all waves without having their health reduced to

zcro, they win the game.

1.5 Tower Grading

For the towers to be valid, they must fulfill several acsthetic and performance criteria.
Another goal is to provide a novel gameplay challenge. Since the tower placement is
an essential mechanic and requires intelligent use of resources and strategy (Kraner
ct al.; 2021), having the towers organically grow and fuse with cach other will
impact the player’s marker placement. It will also be expanded on the tower typing,
replacing the mono-typed towers with towers that have a main type and a sub-type,

further incentivizing the player to grow the towers smartly.

To construct the tower meshes, the "Marching Cubes” algorithm is used. This allows
the creation of hive-like shapes from low-level data and casily ties in existing asscts
into the towers’ visuals. To add more visual fidelity to the tower surfaces, a shader
is created using Unity’s shader graph. The shader is designed in a way that it can

overlay different effects depending on the tower’s type.

The result is towers that are organically grown by the agents. The player retains a
good amount of control over where he/she wants to grow the towers and how they
arc shaped. The tower functionality differs enough from the old system to create a
novel game experience. The towers fulfill all predefined criteria. Namecly: Towers
do not appear to be flying, always consist of complete meshes with no holes, can be
constructed in parallel, and fuse when they grow into cach other. Their construction
can be interrupted and resumed at any point. They can be shaped by the player
and modified by the developer. The predefined parts are correctly placed on top of

the tower surface. All while not impacting the performance in a disruptive way.

2 Related Work

This chapter will show what procedural content gencration is and how it has been
applied in tower defense games. It can also be scen which methods can be used to
generate content procedurally and how they have been used in combination with

Swarlns.

2.1 What is Procedural Content Generation?

"Procedural content gencration in games refers to the creation of game content
automatically using algorithms' (Togelius et al.; 2011). This could be anything
from textures to dialogues up to whole games themselves (Mark et al.; 2015). In this
case, it would be the generation of the defending towers. There is already a broad
application of PCG in the game context. Having the content created automatically
has many benefits. It can replace or support designers in cutting down on cost and
time, which is necessary due to a growing population of players and an increasing
demand for content. This is further amplified by an increasing nced for quality
of said content (Hendrikx et al.,; 2013). As a survey by Freiknecht and Effelsberg
(2017) shows, PCG has been widely applied not only in digital but also analog games
such as "The Settlers of Catan" (Teuber, 1995) adding a high degree of replayability.
There are also alrecady examples dealing with tower defense games, such as Du et al.
(2019) and Ohman (2020), whose algorithms automatically gencrate new levels for

tower defense games.

Du et al. (2019) build on an already existing game by analyzing paths, tower lo-
cations, and enemy sequences and then generating new "building blocks' from the
data. These building blocks are then used to generate new levels using varying PCG

methods for cach type of building block.

2 Related Work

Ohman (2020), on the other hand, uses PCG to generate the whole level from scratch
using the values of noise textures as geometry data for the generated ground mesh

and paths.

2.2 What is a Swarm?

Swarms can be scen in many forms in nature, like in flocks of birds, schools of fish, or
colonics of ants. A swarm is made of many independent actors that navigate based
on their local perception. Many stimuli like their environment, simulated physics,
or pheromone tracks can be used to influence their behavior. The combined motion
of the swarm results from the relatively simple behavior of cach and every agent
(Reynolds, 1987). Swarms have a long history in computer science, and various
algorithms for modeling swarm behaviors have been iterated (Karaboga & Akay,
2009). A widely used model is the bird-like "boids" first defined by Reynolds (1987).

The basic behavior of a boid is defined by three simple rules:

« Collision Avoidance: The boid avoids collision with other boids.
« Velocity Matching: Boids try to match the velocity of other nearby boids.

» Flock Centering: Boids try to stay close to cach other.

The behavior that emerges from these relatively simple rules has found a wide array

of applications.

2.3 Using Swarm Agents for PCG

To tic in the swarm mechanics of the tower defense game, how swarm agents are
used in the PCG context will be looked at. Cabezas and Thompson (2013) usc a
swarm algorithm for PCG. The swarm is given a starting point and a deformation
pattern by the user. Then the agents traverse the terrain modifying the height of
vertices nearby. The height modification is done with respect to the neighboring
vertices. Similarly, de Andrade et al. (2020) use the swarm agent’s behavior to
generate acsthetically engaging 3D animations. The swarm agents traverse a land-

scape, thereby adjusting the height of the traversed topology. Both approaches show

2.4 How is PCG Applied in Tower Defense Games?

how the swarm’s social behavior can shape meshes in novel ways, providing unique

results.

2.4 How is PCG Applied in Tower Defense Games?

A tower defense game is a digital strategy game in which the player has to defend
a base from oncoming cnemics. The enemies follow a predetermined path, and the
player has to stop them. This is achieved by building towers that cither destroy the
enemies or stop them from reaching the player’s base in other ways (Kraner ct al.,
2021) (Tan ct al., 2013). So far, PCG has mostly been used to generate the terrain
that towers are placed on, path generation for the enemiecs’ movement and enemy
spawn behavior, as well as generated levels’ balancing. Some rescarch also builds on
this terrain generation, testing path-finding algorithms trying to cfficiently traverse
the terrain, like in the rescarch of Liu et al. (2019) where the enemics try to find an

cfficient path to the base.

2.5 Using Marching Cubes for PCG

Marching Cubes is a 3D surface construction algorithm. It is a cell-by-cell method
that creates isosurfaces from scalar volumetric data sets (Newman & Yi, 2006). One
example of its use in a tower defense game is the implementation of Ohman (2020),
where it is used to procedurally generate a terrain mesh as the floor for the level. A
big advantage of Marching Cubes is that it can create high-resolution 3D surfaces

from a simple 3D array of data (Lorensen & Cline, 1987).

3 Methodology

This section explains how the towers are generated from low-level data, how the
agents influence this low-level data, and how the visual fidelity of the generated

towers is further increased using shaders and handmade 3D asscts.

3.1 Tower Construction

The tower meshes are created using the Marching Cubes algorithm, which gencrates
a collection of individual triangle meshes. These meshes can then be combined to

form the final tower mesh.

Starting out, a single Marching Cube is created. The cube consists of a base coor-
dinate and cight corner points. The corner point positions are initialized using a sct

of direction vectors scaled to the size of the cube.

The corner points hold the actual information about how the tower should be built.
Each corner point holds a value between -32 and 16 for cach tower-type resource.
If one of these values exceeds zero, the point is considered "inside." If all values
are smaller than zero, the point is considered "outside." Since each cube has cight
corners and cach corner can cither be inside or outside, the number of possible
cube configurations is 28 = 256. Many of these configurations are symmetries. A
lookup table is used to determine which corner configuration produces which set of
triangles. The lookup table returns a list of edges for the corner configuration. Each
cdge is related to two corner points. Then another lookup table is used to retrieve
the points related to cach edge. Given these sets of points, the midpoint of cach
cdge can be determined. The midpoint positions are saved to a list. This list can
be split into sets of three, returning the corner coordinates for cach triangle. Then
cach triangle can be drawn. The resulting cube can be scen in figure 3.1. The corner
points can not be seen in the final scene. They are visualized here for clarity. To

add more visual interest to the towers, the position of the triangle corners on the

11

3 Methodology

» I.!
. o »
- -

i F Y

Figure 3.1. A single Marching Cube. The "outside" corners have been visualized
with white spheres, and the inside corners with black spheres. The generated triangle
can be seen in the bottom left corner. The left picture shows a Marching Cube
without weighted edges, and the right picture with weighted edges, shifting the
triangle.

edge can be adjusted using the resource value of the corners as weights. This also
makes the growth of the tower look more fluid since the triangle corners move along
the edge instead of snapping between the midpoints of the corners. The influence

of the weights can be scen in figure 3.1.

Another thing that can be done is assigning different colors to the triangle ver-
tices depending on which resource type is primarily present in the corner points.
This makes it possible to casily blend different colors or materials within a single

triangle.

An evenly spaced grid is needed to set up multiple Marching Cubes for the scene.
This grid is created using an Octree structure. While using a complex structure like
an Octree to generate this grid is unnccessary, the structure has several advantages,
as will be discussed later. An immediate benefit is that the resolution, i.c., the
number of cubes per volume, can casily be set by adjusting the depth of the Octree.
The Octree works recursively, creating eight smaller Octree branches inside of itself.
Such a branch is also called a "child." This is done for cach depth iteration until
the maximum depth is reached. The branch created at the maximum depth has no
children and is also referred to as a "leaf branch.” At the maximum depth, instead of

creating new branches, the leaf branch creates a cube instance. A cube instance is a

12

3.1 Tower Construction

3D coordinate with cight corner points. The way the Octree and the cubes are set
up, the corner points of neighboring cubes have identical coordinates at the cubes’
corners. This ensures that the generated triangles are always properly connected to

triangles of neighboring cubes.

When creating the grid, the values are randomly sct for cach point, outside or inside.
As can be seen, the edge coordinates represented by the red spheres in figure 3.2

match the position of their respective neighbor cube’s edge coordinates. The result

is meshes composed of multiple Marching Cubes.

Figure 3.2. A grid of unweighted Marching Cubes. The red spheres mark the edge
coordinates for the generated triangles.

Now a simple agent can be added to the scene. The agent increases the values of
nearby points at random intervals. Doing this yiclds random floating structures

as shown in figurc 3.3. The resulting structures arc alrcady close to the desired

13

3 Methodology

Figure 3.3. Random structures gencrated by a simple agent. The agent can be seen
on the right, highlighted in orange.

outcome. However, one of the defined criteria is that all parts of the towers must
cither be connected to the ground or another tower. To do this, a ground planc
is defined by sctting all points below a given coordinate to be inside. Now gravity

needs to be implemented for the deposited resources to "drop” to the ground.

3.1.1 Resource Dropping and Gravity

Should an agent drop a resource, the resource’s position is snapped to the grid of
points. This is achieved by rounding the position values to the grid’s resolution and
then applying the value increase to the point in the grid with the same coordinate.
To check if the resource has hit the ground, the state of the point directly bencath
the current position is retrieved. If the point beneath is inside, building a tower
fragment at the current position yields a tower connected to either the floor or is
built on top of an existing tower. The value of a point can further be increased after
its state has been set to inside, and this value is used to determine the edge weights.
Therefore, it is ensured to increase this value first before starting to build on top of
it.

Should none of the point’s neighbors be inside or fully saturated, the resource "falls'

14

3.1 Tower Construction

by trying to apply the new value to the neighbor point bencath the current position.
This process can be repeated until the resource hits the ground or leaves the grid. In
the latter case, the dropped resource is discarded. With this in place, valid towers
can alrcady be built. However, their structure will always be similar, forming heap-

like towers as shown in figure 3.4(left).

To allow more interesting structures to be built, it is checked if the neighbor beneath
and any of the other neighbors are inside. Implementing this allows for overhangs
and, therefore, more complex structures like arcs to form while still ensuring that
no part of the tower appears to be flying. An example of the resulting structures

can be seen in figure 3.4(right).

Figure 3.4. Towers constructed by a simple agent, dropping resources with simu-
lated gravity. The structure on the left was constructed, only allowing towers to
form on top of cach other. The structure on the right was constructed, allowing
towers to be built as long as any of the surrounding points are alrecady a tower.

3.1.2 Tower Placement

Now that the agents can randomly generate valid towers, a way for the player to
take control of the tower building is needed. To do this, a marker system is used:
To initialize the construction of a tower, the player can place a marker. The marker
can be one of the three tower types. It can be placed anywhere on the map. When
a marker is placed, a sphere collider is added above the marker. When an agent
carrying a resource collides with the marker, the agent drops the resource, and the
tower is partially constructed. After a set amount of resources has been dropped,
as a result of the agents colliding with the marker, the marker disappears. Should
the player want to continue the construction of a tower, they can place another
marker near the existing tower. This marker system allows the player to have

multiple towers constructed simultancously. It also prevents the map from being

3 Methodology

quickly filled with too many markers resulting in a loss of control for the player.
Additionally, it prevents the player from accidentally allocating too many resources

to a single tower by accident.

3.1.3 Octree

As already described, an Octree is not necessarily needed to create the grid. How-
ever, when modifying a point, the cighth surrounding cubes arce affected, and their
triangles must be redrawn. To find the affected cubes efficiently, the Octree struc-
ture can be used. To do this, the algorithm starts at the root position of the Octree
and then traverses to cach child node that is closer to the modified point than the
current position. This process is repeated for cach child node selected in the previous
step. This is done until the maximum Octree-depth has been reached. At this point,
the algorithm has traversed to the leaf nodes containing the cubes. These cubes are
the cubes neighboring the point. The complexity of this scarch is O(8logn), with
n = Octree-depth. This search also allows us to casily find the necarest point of
any given coordinate. After finding the cight cubes near a coordinate, their shared
corner coordinate is returned. Additionally, points at the edge of the grid that have

less than cight surrounding cubes are also covered by this approach.

3.1.4 Shaders

To increase the visual fidelity of the towers and also for gameplay purposes, a shader
is applied to the generated tower surface. The shader is made using Unity’s shader
graph. The shader has four major components: A base surface that is present no
matter what type the tower has and three semi-transparent components that are
overlaid depending on the tower’s type. The base component is designed to look like
a plain copper surface. The overlaid components are animated and are representative
of the tower-type functionality. The four components can be seen as separate and

combined in figure 3.5.

16

3.2 Tower Functionalitics

e

Figure 3.5. Surface shader components representing the different tower types. From
left to right: Base color, laser, shock, shield, all types combined.

Figure 3.6. The process of a laser tower firing at an cnemy. First, the tower is idle.
Then all tower objects on the surface planes fire a laser at a combined spot. The
lasers make a laser orb appear at the target position. The orb grows over time and
gets bigger with cach surface object contributing. Then the laser orb fires a laser at
the nearest enemy, dealing damage depending on its size.

3.2 Tower Functionalities

The new tower functionalitics are reflecting of the three tower types the game had

before the tower generation was implemented. The old tower types were:

« A single attack tower that shoots a fiery projectile at the nearest ecnemy at

regular intervals.

¢ An arca-of-effect attack tower that damages all nearby enemies with lightning

at rcgular intervals.

¢ A shicld tower that generates a wall on a nearby lane. When an enemy en-
counters a wall they have to spend time destroying it before they can move

on.

Respectively the new tower functionalitics arc:

17

3 Methodology

« A laser tower that charges up and then fires a continuous laser at the nearest

cnemy.

« A shock tower that throws a projectile at the nearest enemy in an arc. On
impact, the projectile damages all enemies in the arca around the impact

location.

« A shicld tower that slows down enemics when they walk through it. While
traversing the tower enemics slowly lower the value of the nearest point. This
makes the tower slowly disappear as more enemics pass through it, giving the

illusion that the enemies "chew" through the tower.

All towers benefit from a bigger size, forcing the player to decide whether to combine

towers for these benefits or to have a bigger number of smaller, weaker towers.

When a laser tower is bigger it deals more damage but can only attack one enemy
at a time. Multiple smaller laser towers deal less damage but can split their fire on
different enemies. One big shock tower covers a large arca in one location, while
multiple small shock towers cover smaller arcas in multiple locations. A shield
tower’s strength increases inherently with size since a larger covered arca means the
enemics will be slowed for a longer time. Still, the player can choose to have multiple

small shicld towers in strategic locations, like near the damaging towers.

Figure 3.6 shows how the combined strength is visually communicated to the player.

3.3 Combining Types

To add another layer to the tower building complexity the combination of different
tower types is implemented. This opens up more different approaches the player can
make when playing the game. The combination of tower types is designed in a way
that offers the player a clear trade-off. Combining types gives the tower all benefits
of its main type and a smaller benefit of the sub-type. While building two separate
towers yiclds the full benefit of all the resources used, combining tower types lets
the player benefit from the increased size of the tower as well as fitting more tower

functionality in a smaller space.

The bencfits of combining tower types can be seen in table 3.1.

18

Table 3.1. Combination of Tower Types

3.3 Combining Types

Type

Laser (MT)

Shock (MT)

Shicld (MT)

Lascr (ST)

Deals more
damage to cach

cnemy hit

When consuming
the tower, the

enemy is damaged

arca around the

target

significantly
When consuming
Damages all
o the tower, all
, cnemics in a small]
Shock (ST) X necarby enemies

arc damaged

slightly
Slow the target)
. Slightly slows all
Shield (ST) cnem o X
Y enemics hit
significantly

(MT = Main type, ST = Sub-type)

19

4 Results

4.1 Tower Evaluation

To evaluate the success of the algorithm, the acsthetics of the generated towers arc
quantified as measurable values. The following section describes the criteria that
were defined for the towers beforchand. For cach of the criteria, the degree to which

they are satisfied is evaluated.

Cohesion: All parts of the mesh have to be connected to either the rest of the mesh

or the ground. No parts of the towers should appear to be flying.

As explained carlier, the towers can only grow in points adjacent to cither the ground

or another tower’s surface. Therefore this constraint is satisfied.

Completeness: The towers must not have any visible holes exposing the backside

of the gencrated surfaces.

When the Marching Cube algorithm is applied correctly, it is guaranteed to return
complete meshes that do not expose any backsides. The only exception is the edges
of the grid where the cubes do not have any neighbors on one or more sides. Setting
these points to be inside would expose the backside of the tower mesh at the edges
of the grid. To prevent this, the state of all outermost data points is sct to be
permancently outside. With this, not only do the towers not show any backsides, but

they are also complete at the edge of the grid, satisfying this constraint.

Performance: The game must maintain a minimum of 60 frames per second during
runtime. Since the game is developed as part of a rescarch lab at the University of
Wiirzburg, it must achicve this within the limits of the hardware in their laborato-

rics.

21

4 Results

The game’s performance is tested on the following system:

Processor: Intel Core 15-6600K
Memory: 16 GB

Opcrating System: Windows 10

Graphics Card: NVIDIA GceForce GTX 1060 6GB

Virtual Reality Device: Oculus Rift and Touch

Over a runtime of 5 minutes, an average amount of 145 frames per sccond is
achicved with a peak of 813 frames and a minimum of 89 frames. No perceivable
frame drops were encountered. While the constraint is satisfied, it should be noted

that performance improvements could be made nonctheless.

Adjustability: The generated mesh should be casily adjustable, allowing users to

adjust the acsthetics to their liking.

When it comes to the generated mesh, multiple components can be adjusted. On the
developer’s side, the resolution of the Marching Cubes mesh can be casily adjusted
by changing the Octree’s resolution. Additionally, the surface look can be changed
by adjusting the shader graph for the surface shader. This allows the developer to
achicve a different base look and can also be used to adjust the color and patterns
of the different tower-type overlays. This can be uscful for achieving different looks

or implementing accessibility settings such as a color-blind mode.

On the user’s side, the resolution chosen for the Marching Cubes in the game scene
allows for a meaningful degree of control. The user is able to create shapes like
overhangs and arcs reasonably casily despite the varying amount of control due to

the swarm mechanics used for building the towers.

Since the developer and player have multiple casy ways to adjust the generated

towers, this constraint is satisfied.

Parallel Construction: Building multiple independent towers is strategically im-
portant in TDGs. The player has to be able to start the construction of two or more

independent towers at the same time.

There is no limit on how many markers that initialize the tower building process

can be placed at once. Additionally, towers can be constructed in parallel, and the

22

4.2 Gamecplay Impact

building state of a tower has no influence on whether or not other towers can be

built. Thercfore the constraint is satisfied.

Coordinated Construction: In the case that two towers would grow into cach
other and start intersecting, they have to merge at the point of intersection. Since
changing the value of a point causes all neighboring cubes to update, the merging of

towers works identically to building a single tower, and the constraint is satisfied.

Continuous Construction: If a tower is no longer supplied with resources and
stops to grow, it has to be able to resume growth as soon as resources arce available

again.

Since the resource of a point can be modified at any time independently from any
other gameplay system, stopping the supply of resources will result in the tower not
growing anymorc. Resuming to supply the turret will continue its growth, satisfying

the constraint.

Integration of Predefined Assets: Lastly, it has to be ensured that predefined
asscts, such as shield generators or cannons, are correctly placed on the gencrated
surfaces and continue to do so as the tower grows around them. While not defining
a strict minimum distance between the assets, they should also not intersect with

cach other.

The assets arc placed on the surface of the triangles. The position is the average
vector of the triangle’s corner coordinates, giving us roughly the middle of the tri-
angle. The normal of the triangle is used to define the orientation of the assets.
All this ensures that the assets are correctly placed on the tower’s surface. Since
cach cube has only a set amount of configurations, the assets are scaled in a way
that cnsures that they will not intersect with cach other, therefore satisfying this

constraint.

4.2 Gameplay Impact

In addition to the tower visuals, it should also be considered how well the new tower
mechanics tie in with the already existing gameplay loop and how the change of

mechanics impacts the player’s experience. While the tower’s functionalities have

23

4 Results

mostly been adapted from the earlier system, the new system offers some new game-

play opportunities and challenges.

One new mechanic is that the player has to be carcful about combining many small
towers into one bigger tower. This forces the player to make strategic decisions

regarding tower placement.

Another new mechanic is that the player has to constantly rebuild their shicld towers

since the towers are partially destroyed when an enemy passes through them.

Lastly, the combination of tower types. Since the functionality of a tower is defined
by its main and sub-type, the player has to pay attention to not waste a third type
of resource in the construction of a single point. The sub-sub-type would have no
benefit to the tower’s functionality. The player also has to make a strategic decision
about which two tower types to combine and which of these types should be the

main type and the sub-type.

Since the game is fully playable and can be finished with the new mechanics, the

constraint is satisfied.

4.3 Example Towers

In this section, towers grown within the gameplay loop and towers grown decoupled

from gameplay restrictions are shown.

4.3.1 Towers Grown With Gameplay Restrictions

The shown towers are grown with the goal of winning the game. The growth over a
whole game can be scen from a bird’s eye view in figure 4.1. In figure 4.2 the process
of two independent towers growing together over time can be observed. Figure 4.3

shows structures generated after completing the game.

24

4.3 Example Towers

4.3.2 Towers Grown With No Gameplay Restrictions

The following towers were built outside of the regular game loop. To build them
the resource costs and the restrictions on marker placement were removed. Doing
this allows for different structures to be built. In figure 4.4 a high tower with many
overhangs was built. In figure 4.5 a flat sprawling tower structure was created. In
figure 4.6 a mixture of the first two approaches was used to create onc big structure

with smaller structures around it.

4.3 Example Towers

. Path
! Placeq by you
’ Found path to resource

Found %th to construction

Figure 4.2. Two scparate towers that grow together as the game progresses.

27

4 Results

(O]

You Win!

Start Game

Figure 4.3. Tower structures at the end of a successful game.

28

4.3 Example Towers

@ rath placed by you
W Found path to reso

"#' Found path to const

Figure 4.4. Towecrs built to be high and with many overhangs.

29

4 Results

Figure 4.5. Towers built to be flat and sprawling.

30

4.3 Example Towers

Figure 4.6. A big tower structure built by combining tower building techniques used
in figure 4.4 and 4.5.

31

5 Discussion

Although the towers meet all necessary constraints, they appear to exhibit a rel-
atively "blocky" appearance, which deviates from the intended organic design acs-
thetic. While some may argue that the blocky appearance aligns with the mechanical
style of other assets, it is clear that the towers were originally envisioned to possess a
more organic appearance. A way to achieve this would be to increase the resolution
of the grid. The current grid resolution is 32% = 32.768 cubes. While eventually
there will be a performance problem, the number of cubes can be increased to 64% =
262.144 without a significant performance decrease. How a tower at that resolution

would look can be seen in figure 5.1.

This is not done in the final game for gameplay rcasons. By design, the player has
limited control over the swarm and therefore, over how the towers are constructed.
Increasing the resolution makes it increasingly harder for the player to have any
impact on how the towers will look. Keeping the resolution low, on the other hand,
allows the player, for example, to intentionally build overhangs by tactically placing

the markers.

To summarize: Increasing the resolution reduces the control that the player has. The
highest resolution at which the player can still meaningfully shape the towers seems
to be 322 cubes. It can be contended that the novel tower system provides a distinct
gameplay encounter, cffectively integrating tower creation within the pre-existing

game framework.

5.1 Balancing

To balance the laser and the shock towers, the most important parameters arc the
increase of power they get from a bigger size, their base damage, their fire rate,
and for the shock tower, the arca affected by the attack. For the shicld tower, it

is the time they slow the enemies and the number of resources an enemy consumes

33

5 Discussion

Figure 5.1. A tower constructed with a grid resolution of 64 cubes.

when passing through them. Adjusting the number of resources a tower needs to
be built is also an important aspect. In the future, these numbers can be tweaked
to change how fast the towers grow. A mechanic that was not put in place to
simplify the balancing is the decay of towers over time. Implementing this would
add another layer of complexity for the player. Since this mechanic would make the
game more challenging, it could be an optional difficulty setting. Since shock towers
arc unlocked at a later stage than the laser towers, they can have better base stats

since the enemics are already stronger at this point than they are in the beginning.

34

5.2 Future Work

5.2 Future Work

Since the resolution limitation stems mainly from the game context, it would be
interesting to sece what towers could be generated in an independent simulation.
Swarm agents with different goals could shape interesting structures by building
them up. Alternatively, the tower-building process could be inverted, letting agents
dig their way through a Marching Cube grid. This could be used to build the
underground part of ant hill-like structures. Since the tower-consuming mechanic is

alrecady in place for the shicld towers, this can casily be done.

Another thing that could be done is to improve the performance of the implemented
Marching Cubes. Especially if higher grid resolutions are useful for an independent
simulation. When it comes to independent simulations, the resolution should prob-
ably be as high as possible. Since such a simulation might not have to be done in

rcal-time or virtual reality, the resolution could be even higher.

When it comes to the game, a couple of aspects could still be improved upon. The
marker placement stems largely from the old tower building system and does not
allow for a wide range of vertical placement. This could be adjusted in the future,
giving the player more freedom. New content could also be added by adding more
tower types. So far, the tower types are based on the tower types that the game
alrcady had before. Future work could explore which kinds of new towers could be
integrated into the game. Since towers can be combined, cach new tower type would
add an increasing amount of complexity and, therefore, a lot more possibilities for

the player to play the game.

Bibliography

Cabezas, A. F., & Thompson, T. (2013). Real-time procedural terrain generation
through swarm behaviours. FDG, 421-422 (cit. on p. 8).

Chen, S.-M., & Chien, C.-Y. (2011). Solving the traveling salesman problem based
on the genetic simulated anncaling ant colony system with particle swarm
optimization techniques. Ezpert Systems with Applications, 38(12), 14439
14450 (cit. on p. 1).

de Andrade, D., Fachada, N., Fernandes, C. M., & Rosa, A. C. (2020). Generative
art with swarm landscapes. Entropy, 22(11) (cit. on p. 8).

Du, Y., Li, J., Hou, X., Lu, H., Liu, S. C., Guo, X., Yang, K., & Tang, Q. (2019).
Automatic level generation for tower defense games. 2019 IEEFE 3rd Informa-
tion Technology, Networking, Electronic and Automation Control Conference
(ITNEC), 670-676 (cit. on p. 7).

Freiknecht, J., & Effelsberg, W. (2017). A survey on the procedural gencration of
virtual worlds. Multimodal Technologies and Interaction, 1(4), 27 (cit. on
p. 7).

Hendrikx, M., Meijer, S., Van Der Velden, J., & Tosup, A. (2013). Procedural content
generation for games: A survey. ACM Trans. Multimedia Comput. Commun.
Appl., 9(1) (cit. on p. 7).

Karaboga, D., & Akay, B. (2009). A survey: Algorithms simulating bee swarm
intelligence. Artificial intelligence review, 31, 61-85 (cit. on p. 8).

Kraner, V., Fister jr, 1., & Brezoénik, L. (2021). Procedural content generation of
custom tower defense game using genctic algorithms. (Cit. on pp. 6, 9).

Liu, S., Chaoran, L., Yue, L., Heng, M., Xiao, H., Yiming, S., Licong, W., Ze, C.,
Xianghao, G., Hengtong, L., Yu, D.; & Qinting, T. (2019). Automatic gener-
ation of tower defense levels using peg. Proceedings of the 14th International
Conference on the Foundations of Digital Games (cit. on p. 9).

Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3d
surface construction algorithm. SIGGRAPH Comput. Graph., 21(4), 163~
169 (cit. on p. 9).

37

Bibliography

Mark, B., Berechet, T., Mahlmann, T., & Togelius, J. (2015). Procedural generation
of 3d caves for games on the gpu. FDG (cit. on p. 7).

Newman, T. S.; & Yi, H. (2006). A survey of the marching cubes algorithm.
Computers & Graphics, 30(5), 854-879 (cit. on p. 9).

Ohman, J. (2020). Procedural gencration of tower defense levels. (Cit. on pp. 7 sqq.).

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.
Proceedings of the 14th Annual Conference on Computer Graphics and In-
teractive Techniques, 25-34 (cit. on p. 8).

Tan, T. G., Yong, Y. N., Chin, K. O., Teo, J., & Alfred, R. (2013). Automated
evaluation for ai controllers in tower defense game using genetic algorithm.
International Multi-Conference on Artificial Intelligence Technology, 135—
146 (cit. on p. 9).

Teuber. (1995). The settlers of catan. (Cit. on p. 7).

Togelius, J., Kastbjerg, E., Schedl, D., & Yannakakis, G. N. (2011). What is
procedural content gencration? mario on the borderline. Proceedings of the
2nd International Workshop on Procedural Content Generation in Games

(cit. on p. 7).

38

Selbststandigkeitserklarung

Hiermit erklére ich, dass ich die vorliegende Arbeit selbstindig und ohne Benutzung
anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe. Alle Stellen,
die wortlich oder sinngeméf aus verdffentlichten oder nicht veréffentlichten Schriften
entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit hat in gleicher

oder dhnlicher Form noch keiner anderen Priifungsbehorde vorgelegen.

Wiirzburg, March 27, 2023
@/fz/ e

Lenny Siol

Julius-Maximilians-
UNIVERSITAT
WURZBURG Versicherung zur Leistungserbringung

Titel der Abschlussarbeit:

Self-Organised Construction of Particle-Based 3D Artifacts

Thema bereitgestellt von (Titel, Vorname, Nachname, Lehrstuhl):

Prof. Dr. Sebastian von Mammen, Chair of Human-Computer Interaction

Eingereicht durch (Vorname, Nachname, Matrikel):

Lenny Siol, 2334375

Ich versichere, dass ich die vorstehende Arbeit selbststandig und ohne fremde Hilfe angefertigt
und mich keiner anderer als der in den beigefiigten Verzeichnissen angegebenen Hilfsmittel
bedient habe. Alle Textstellen, die wortlich oder sinngemaf aus Verdffentlichungen Dritter
entnommen wurden, sind als solche kenntlich gemacht. Alle Quellen, die dem World Wide Web
entnommen oder in einer digitalen Form verwendet wurden, sind der Arbeit beigefiigt.

Weitere Personen waren an der geistigen Leistung der vorliegenden Arbeit nicht beteiligt.
Insbesondere habe ich nicht die Hilfe eines Ghostwriters oder einer Ghostwriting-Agentur in
Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar Geld oder
geldwerte Leistungen fiir Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der
vorgelegten Arbeit stehen.

Der Durchfiihrung einer elektronischen Plagiatspriifung stimme ich hiermit zu. Die eingereichte
elektronische Fassung der Arbeit ist vollstandig. Mir ist bewusst, dass nachtrdgliche
Ergdnzungen ausgeschlossen sind.

Die Arbeit wurde bisher keiner anderen Priifungsbehdrde vorgelegt und auch nicht

verdffentlicht. Ich bin mir bewusst, dass eine unwahre Erklarung zur Versicherung der
selbststdandigen Leistungserbringung rechtliche Folgen haben kann.

Wiirzburg, dem 27.03.2023 @ﬁz/ =

Ort, Datum, Unterschrift

Ref. 2.3 / Stand: 0z2.11.2021

